
Performance Evaluation for

Question Classification by Tree Kernels using 

Support Vector Machines

Muhammad Arifur Rahman
Department of Physics, Jahangirnagar University  

Dhaka-1342, Bangladesh 

arifmail@gmail.com 

Abstract  —  Question answering systems use information 

retrieval (IR) and information extraction (IE) methods to 

retrieve documents containing a valid answer. Question 

classification plays an important role in the question answer 

frame to reduce the gap between question and answer. This 

paper presents our research work on automatic question 

classification through machine learning approaches. We 

have experimented with machine learning algorithms 

Support Vector Machines (SVM) using kernel methods.  An 

effective way to integrate syntactic structures for question 

classification in machine learning algorithms is the use of 

tree kernel (TK) functions. Here we use SubTree kernel, 

SubSet Tree kernel with Bag of words and Partial Tree 

kernels. Trade-off between training error and margin, Cost-

factor and the decay factor has significant impact when we 

use SVM for the above mentioned kernel types.  The 

experiments determined the individual impact for Trade-off 

between training error and margin, Cost-factor and the 

decay factor and later the combined effect for Trade-off 

between training error and margin, Cost-factor. For each 

kernel types depending on these result we also figure out 

some hyper planes which can maximize the performance. 

Based on some standard data set outcomes of our 

experiment for question classification is promising. 

Index Terms  —  Precision, Recall, kernel, SubSet Tree, 

SubTree, Partial Tree, SVM, Question Classification, 

Question Answering. 

I.  INTRODUCTION 

     The World Wide Web continues to grow at an 

amazing speed. So, there are also a quickly growing 

number of text and hypertext documents. Due to the huge 

size, high dynamics, and large diversity of the web, it has 

become a very challenging task to find the truly relevant 

content for some user or purpose. The open-domain 

question answering system (QA) has been attached great 

attention for its capacity of providing compact and 

precise results for users. 

     The study of question classification (QC), as a new 

field, corresponds with the research of QA. At present the 

studies on QC are mainly based on the text classification. 

Though QC is similar to text classification in some 

aspects, they are clearly distinct in that: Question is 

usually shorter, and contains less lexicon-based 

information than text, which brings great trouble to QC. 

Therefore to obtain higher classifying accuracy, QC has 

to make further analysis of sentences, namely QC has to 

extend interrogative sentence with syntactic and semantic 

knowledge, replacing or extending the vocabulary of the 

question with the semantic meaning of every word. 

     In QC, many systems apply machine-learning 

approaches [1-3]. The classification is made according to 

the lexical, syntactic features and parts of speech. 

Machine learning approach is of great adaptability, and 

90.0% of classifying accuracy is obtained with SVM 

method and tree kernel as features. However, there is still 

the problem that the classifying result is affected by the 

accuracy of syntactic analyzer, which need manually to 

determine the weights of different classifying features. 

Some other systems adopting manual-rule [4]. 

     This paper presents our approaches at question 

classification to improve the f1-measure [6]. of question 

categorization. Our experiment tried to determine the 

optimum value for trade-off between training error and 

margin, cost-factor by which training errors on positive 

examples outweighs errors on negative examples. It is 

used to adjust the rate between precision and recall on the 

development set [5-6]. and the decay factor which has the 

role to penalize larger tree structures by giving them less 

weight in the overall summation [7]. To represent 

questions, the paper uses the standard Li and Roth [8] 

question classification dataset. 

     After this overview, question classifying method, a 

brief description about the used algorithm and the kernel 

methods are introduced, and then impact of different 

parameters and parameters combination methods has 

been investigated. The comparisons are testified in 

experiments based on precision, recall and f1-measure. 

The last part of the paper is about the conclusion of the 

present research and about the introduction of the further 

work could be done on this issue. 

II.  QUESTION CLASSIFICATION 

     Question classification means putting the questions 

into several semantic categories. Approaches to question 

classification can be divided in two broad classes, namely, 

rule-based and machine learning methods. Most recent 

studies have been based on machine learning approaches. 

Li and Roth proposed 6 coarse classes and 50 fine classes 

for TREC factoid question answering. The UIUC QC 
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dataset, which they developed, contains 5,500 training 

questions and 500 test questions, and it is now the 

standard dataset for question classification [8-9]. We used 

this dataset for our training and testing purpose. 

     In Table I each coarse grained category contains a 

non-overlapping set of fine grained categories. Most 

question answering systems use a coarse grained category 

definition. Usually the number of question categories is 

less than 20. However, it is obvious that a fine grained 

category definition is more beneficial in locating and 

verifying the plausible answers. 

TABLE I: THE COARSE AND FINE GRAINED QUESTION 

CATEGORIES. 

Coarse Fine

ABBR Abbreviation, expansion 

DESC description, definition, manner, reason 

ENTY body, color, event, food, creation, currency, 

animal, disease/medical, instrument, language, 

letter, other, plant, product, religion, sport, 

substance, symbol, technique, term, vehicle, 

word  

HUM description, group, individual, title  

LOC city, country, mountain, other, state  

NUM code, count, date, distance, money, order, 

other, percent, period, speed, temperature, size, 

weight 

III.  SUPPORT VECTOR MACHINE (SVM) 

     Support vector machine are based on the structural 

risk minimization principle from statistical learning 

theory [10]. The idea of structural risk minimization is to 

find a hypothesis for which we can guarantee the lowest 

true error. The bounds are connected on the true error 

with the margin of separating hyper planes. In their basic 

form support vector machines find the hyper plane that 

separates the training data with maximum margin. Since 

we will be dealing with very unbalanced numbers of 

positive and negative examples in the following, we use 

cost factors C+ and C- to be able to adjust the cost of false 

positives vs. false negatives as [11]. Finding this hyper 

plane can be translated into the following optimization 

problem: 

Minimize: 

1:1:

2

2

1

ji yi

j

yi

i CCw

Subjected to: kkk bxwyk 1.:

Here xi is the feature vector of example i. yi equals +1 or -

1, if example i is in class ‘+’ or ‘-’ respectively.  

     Using support vector machine we tried to determine 

the optimal value of trade-off between training error and 

margin (c), cost-factor (j) by which training errors on 

positive examples outweighs errors on negative examples. 

It is used to adjust the rate between precision and recall 

on the development set [11]. Here lambda ( ) the decay 

factor which has the role to penalize larger tree structures 

by giving them less weight in the overall summation. 

IV.  KERNEL METHODS 

     One of the most difficult tasks on applying machine 

learning for question classification is the feature design. 

Feature should represent data in a way that allows 

learning algorithm to separate positive from negative 

examples. In SVMs, features are used to build the vector 

representation of data examples and the scalar product 

between example pairs quantifiers how much they are 

similar. Instead of encoding data in the features vectors, 

kernel functions can be designed that provide such 

similarity between example pairs without using an 

explicit feature representation [6]. 

     The kernels we considered in this paper represent 

trees in terms of their substructure. Such fragments define 

the feature space which, in turn, is mapped into a vector 

space. The kernel function measures the similarity 

between trees by counting the number of common 

fragments. These functions have to recognize if a 

common tree subpart belongs to the feature space that we 

intended to generate. Here we considered three important 

characterization: SubTrees (STs), SubSet Trees (SSTs) 

and a new tree class Partial Trees (PTs) described as in 

[6].  

     In case of syntactic parse trees each node with its 

children is associated with a grammar production rule, 

where the symbol at left hand side corresponds to the 

parent and the symbol at right hand side are associated 

with the children. The terminal symbols of the grammar 

are always associated with the leaves of the tree. For 

example, Fig 1. illustrate the syntactic parse of the 

sentence- 

“Adib brought a cat to the school”. 

Figure. 1. A syntactic parse tree.  

Figure. 2. A syntactic parse tree with its SubTrees (STs).  

     A SubTree (ST) can be defined as any node of a tree 

along with all its descendants. For example, in the Fig. 1. 

circle the SubTree rooted in the NP node. A SubSet Tree 

(SST) is a more general structure which necessarily not 
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includes all the descendants. The only restriction is that 

an SST must be generated by applying the same 

grammatical rule set which generated the original tree, as 

pointed out in [12]. Thus, the difference with the SubTree 

is that the SST’s leaves can be associated with non-

terminal symbols. For example, [S  [N  VP]] is an SST of 

the tree in the Fig. 1. and it has the two non terminal 

symbols N and VP as leaves. 

Figure. 3. A tree with some of its SubSet Trees (SSTs).  

Figure. 4. A tree with some of its Partial Trees (PTs). 

     If we relax the constraints over the SST’s, we obtain a 

more general form of substructure that we defined as 

Partial Trees (PTs). These can be generated by the 

application of partial production rules of the original 

grammar.  For example, [S  [N VP]], [S  [N]] and [S  

[VP]] are valid PTs of the tree in the Fig. 1. Here Fig. 2. 

shows the parse tree of the sentence “Adib brought 

a cat” together with its 6 STs. The number of SSTs is 

always higher. For example, Fig. 3. shows 10 SSTs (out 

of  all 17) of the SubTree of the Fig. 2. rooted in VP. Fig. 

4. shows that the number of PTs derived from the same 

tree is still higher (i.e. 30 PTs). These different 

substructure numbers provide an intuitive quantification 

of the different information level among the tree based 

representations [6].  

     The main idea of the tree kernel is to compute the 

number of the common substructures between two trees 

T1 and T2 without explicitly considering the whole 

fragment space. From [6]. given a tree fragment space {f1,

f2,….} = F, here we denote the indicator function Ii(n)

which is equal 1 if the target f1 is rooted at the node n and 

0 otherwise. It followed that- 

2211

2121 ,,

TT NnNn

nnTTK …         (1) 

where 
1TN  and  

2TN  are the sets of the T1’s and T2’s

nodes, respectively and 

F

i

ii nInInn
1

2121, .

     This letter is equal to the number of common 

fragments rooted at the n1 and n2 nodes. We can compute 

 as follows- 

1. if the production at n1 and n2 are different 

the 0, 21 nn ;

2. if the production at n1 and n2 are the same, and 

n1 and n2 have only leaf children (pre-terminal 

symbols) then 1, 21 nn ;

3. if the production at n1 and n2 are the same, and 

n1 and n2 are not pre-terminals then 

1

21
1

21 ,,

nnc

j

j
n

j
n

ccnn  …      (2) 

where ,1,0 1nnc  is the number of the children 

of n1 and 
j

nc is the j-th child of the node n. As the 

production is same nc(n1)= nc(n2). 

When =0, 21,nn  is equal 1 only if 

1,
21

j
n

j
n

ccj , i.e. all the productions associated 

with the children are identical. By recursively applying 

the property, it follows the SubTrees in n1 and n2 are 

identical. Thus Eq. 1 evaluate the SubSet Tree 

kernel .When =1, 21,nn  evaluates the number of 

SSTs common to n1 and n2 as proved in [12]. 

     To include the leaves as fragments it is enough to add, 

to the recursive rule set for the  evaluation, the 

condition is- if n1 and n2 are leaves and their associated 

symbols are equal then 1, 21 nn . By [6]. such 

extended kernel can be referred as SST+bow (bag-of-

words). Here the decay factor ( ) is defined as  

zx nn , and

xnnc

j

j
n

j
nzx ccnn

1
21

,, .

     To evaluate all possible substructures common to two 

trees, we can (1) select a child from the both trees, (2) 

extract the portion of the syntactic rule that contains such 

subset, (3) apply Eq. 2 to the extracted partial productions 

and sum the contributions of all the children subsets. 

Such subsets corresponds to all possible common (non 

continuous) node subsequence and computed efficiently  

by means of sequence kernel [13]. Let 

rJJJ 1111 ..,,  and rJJJ 2122 ..,,  be the 

index sequence associated with the order child sequence 

of n1 and n2 respectively. Then the number of PTs is 

evaluated by the following  function: 

2121
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n
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where 1Jl  indicates the length of the target child 

sequence, whereas iJ1 and iJ2  are the ith children in the 

two sequences. 
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V.  RESULTS AND ANALYSIS 

     We evaluate the performance of Question 

Classification using SVM with SubTree kernel, SubSet 

Tree kernel with Bag of words (SST+BOW) and Partial 

Tree kernel. For SubSet Tree kernel with bag of words 

first we investigate the optimum value of trade-off 

between training error and margin (c) keeping cost-factor 

(j) and the decay factor ( ) constant. Then we investigate 

the impact of cost factor (j) for constant trade-off between 

training error and margin (c) and decay factor ( ).  

For Cost Factor (j)=0.5
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Figure. 5 (a). Training error and Margin Vs F1 Measure  

for j = 0.5 and SST+BOW  

For Cost Factor (j)=1.5
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Figure. 5 (b). Training error and Margin Vs F1 Measure  

for j = 1.5 and SST+BOW 

For Cost Factor (j)=3.5
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Figure. 5 (c). Training error and Margin Vs F1 Measure  

for j = 3.5 and SST+BOW 

Then for constant factor ( ) we determine the hyper plane 

for trade-off between training error and margin (c) and 

cost-factor (j) which have the maximum f1-measure. 

Finally we determined the impact of decay factor ( ) for a 

constant trade-off between training error and margin (c) 

and cost-factor (j). The similar process was repeated for 

SubTree kernel and partial tree kernel.

     Fig. 5 (a-c). shows the trade-off between training error 

and margin (c) versus performance (measured by f1-

measure) curve for different types of QC data set using 

different Cost Factor (j) and fixed decay factor ( =0.01).  
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Figure. 6. (a) Cost factor Vs F1 measure for C=0.5 and 

SST+BOW. 
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Figure. 6 (b). Cost factor Vs F1 measure for C=1 and 

SST+BOW. 
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Figure. 6 (c). Cost factor Vs F1 measure for C=1.5 and 

SST+BOW. 
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Here it is notable for same set of parameters different 

data types have different performance level. For different 

cost factor highest f1-measure can be achieved by setting 

the trade-off between training error and margin (c) 

around 2, Afterwards its performance becomes almost 

constant.

     Fig. 6. (a-c) shows the cost factor (j) versus 

performance (measured by f1-measure) curve for 

different types of question classification data set using 

different of Trade of between training error and margin  

(c) and fixed decay factor ( =0.01). For a constant trade-

off between training error and margin different types of 

questions have highest f1-measure.  

     For different value of c highest f1-measure can be 

achieved by setting the cost factor (j) less than 2. Even 

for some cases if the value of cost factor is increased then 

the f1-measue is decreased a certain amount and after a 

stage it becomes almost constant. 

     Fig. 7. shows the decay factor ( ) versus f1-measure 

curve for a constant values of trade-off between training 

error and margin (c=1.5) and cost factor (j=1.5). To get a 

very high f1 measure decay factor should have very small. 

Starting after 0, up to 0.5 its performance is almost steady 

but if we increase the decay factor more the performance 

decreased drastically. 

For fixed Cost Factor (j=1.5) and Trade-off (c=1.5)
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Figure. 7. Impact of Decay Factor and SST+BOW.  
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Figure. 8(a). Hyper plane for ABBR data type and SST+BOW.

     Fig. 8(a-f). show the hyper plane by which maximum 

f1-measure can be achieved. For a constant decay factor 

( ) a set of values of trade-off between training error and 

margin (c) and cost factor (j) can provide the highest f1-

measure. Among the six type of data set ‘LOC’ type of 

question have to classified by some fixed combination of 

trade-off between training error and margin (c) and cost 

factor (j) because there is no hyper plane but some peaks. 
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Figure. 8(b). Hyper plane for HUM data type and SST+BOW. 
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Figure. 8(c). Hyper plane for DESC data type and SST+BOW. 
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Figure. 8(d). Hyper plane for LOC data type and SST+BOW. 
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Figure. 8(e). Hyper plane for ENTY data type and SST+BOW. 
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Figure. 9. Training error and Margin Vs F1 Measure  

for j = 0.5 and PT

     Fig. 9. shows the training error and margin versus F1- 

measure curve for a constant cost factor (j = 0.5) using 

partial tree. Like SST+BOW the performance is very low 

when the training error and margin is very low. After a 

certain level (here it is 2) of training error and margin the 

performance tends to become almost constant.  

Figure. 10. Cost factor Vs F1 measure for C=0.5 and PT.

Figure. 11. Impact of Decay Factor for PT.

Figure. 12. Hyper plane for NUM data type and PT.

     Fig. 10. shows the Cost factor versus F1 measure 

curve for a constant training error and margin (C=0.5). 

While Fig. 11. shows the impact of decay Factor. It is 

clear that at the lower range it doesn’t have much impact 

on performance like SST+BOW. Fig. 12 and Fig.13. 

respectively shows the hyper plane for NUM and ENTY 

data type.   
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Fig. 13. Hyper plane for ENTY data type and PT. 

TABLE II: MAXIMUM F1- MEASURE OBTAINED USING 

SUBSET TREE KERNEL WITH BAG OF WORDS (SST+BOW) FOR 

=0.01. 

Coarse F1 P(%) R(%) A(%) j c 

ABBR 88.89 99.6 88.89 88.89 6 1 

DESC 96.77 98.2 95.74 97.83 1 2.5 

ENTY 82.87 93.8 86.21 79.79 6 2 

HUM 95.24 98.8 98.36 92.31 4 3.5 

LOC 87.8 96 86.75 88.89 5.5 0.5 

NUM 94.01 97.4 98.08 90.27 5 1 

TABLE III: MAXIMUM F1- MEASURE OBTAINED USING 

SUBSET TREE KERNEL FOR =0.01. 

Coarse F1 P(%) R(%) A(%) j c 

ABBR 88.89 99.6 88.89 88.89 3.5 2.5 

DESC 97.12 98.4 96.43 97.83 1 3.5 

ENTY 79.78 92.8 84.52 75.53 6.5 3 

HUM 93.75 98.4 95.24 92.31 2 2.5 

LOC 88.48 96.2 86.9 90.12 5.5 1 

NUM 94.01 97.4 98.08 90.27 5 1.5 

TABLE IV: MAXIMUM F1- MEASURE OBTAINED USING 

PARTIAL TREE KERNEL FOR =0.01. 

Coarse F1 P(%) R(%) A(%) j c 

ABBR 87.5 99.6 100 77.78 3 0.5

DESC 96.06 97.8 95.04 97.1 1 3.5 

ENTY 85.56 94.6 86.02 85.11 4 3.5 

HUM 81.33 94.4 71.76 93.85 5.5 0.5 

LOC 88.48 96.2 86.9 90.12 5.5 1.5 

NUM 94.44 97.6 99.03 90.27 4.5 3 

     Table II shows the maximum F1- measure (F1) 

obtained using SubSet tree Kernel-Bag of words 

(SST+BOW) for =0.01 and the corresponding precision 

(P), recall (R), accuracy (A) for specific cost factor (j) 

and trade-off between training error and margin (c). Table 

III and Table IV shows the performance for SubTree 

kernel and Partial Tree kernel respectively.  

VI.  CONCLUSION 

     Question classification is one importance role in the 

Question Answering frame to reduce the gap between 

question and answer. It can conduct answer choosing and 

selection. Our question classification method based on 

the use of linguistic knowledge and machine learning 

approaches and it exploit different classification features 

and combination method, also. Though among all the 

experiments one or two data set did not provide 

distinguishable hyper plane in every cases thereafter the 

outcome of experiments done using the tool SVM_light 

on Li and Roth question classification data sets 

demonstrate some optimal set of values which can 

maximize the performance. In the future we aim to 

investigate the impact of different parameters on 

constituent trees using different types of kernel as well as 

other different classifiers.  
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